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Introduction: Product quantum yields of triplet-sensitized additions - 3Ax+ 0 + adducts - 

depend on the yields of lntersystem crossing of the sensitizer [@~~~'I, triplet energy transfer 

to the molecule A [@&I and addition of the triplet excited molecule 
3x 
A to ground state mole- 

11 
cule B (@iddl : 

(II 

The determination of @zT and @ 
0 
Add from the measured product quantum yield ap and the kinetic 

SCHEME 1 gives informations about the efficiency of the sensitizer and the reactivity of the 

triplet molecule 3Ax . From these parameters one can furthermore calculate the optimal concen- 

tration ratio [A]/[B]. since E can also quench the sensitizer triplet and thus hinder the de- 

sired reaction. 

1.1 Sensitizing process: 
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2.1 Addition process for a particular adduct. 
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kAdd 
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Scheme 1 Kinetic scheme for triplet-sensitized adduct formation (The rate constants kDA and 
kAdd can also describe addition and adduct formation via a common metastable lnter- 
mediate.1 
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EQUATIONS Lll-L31 give the expression for the product quantum yield: 
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The derivative of PlP with respect to 8 gives the concentration 6 max for the largest pos- 

sible product quantum yield for a particular concentration of A and a particular sensitizer: 

l/[TA ' kAddl ' l/2 

CD3 = 

[kA[A-j+ 'l/r I 
sens 

max kS > 
q 

* [I + kDA/kAdd I 
151 

forsufficiently small concentrations of B the third term in EQU. (41 is negligible and a plot of 

l/@P versus l/[B] is linear and yields the values of kDA/kAdd and I/CT, * kAdd1 from its slope 

and intercept [FIGURE 21. 

Results and discussion: The four sensitized (2+21-photocycloadditions in TABLE 1 serve as a 

test for the applicability of equations [II-C51 'co mechanistic evaluation and optlmizatlon of 

the considered reactions. Provide thateitherofthe two partners alternatively can initiate the 

reaction by quenching the triplet sensitizer, those processes indicated by @Add > 1 have to be 

excluded. So it can be decided, that reactions 2 and 4 proceed via trlplet of I, while reac- 

tions 1 and 3 proceed via triplet of II. 

TASLE_~l: Overall 
partner Y 

ields of product-formation (@pISand of addition of the triplet-sensitized 
Ax to ground state partner 6 [GAddl. Solvent: dioxane, 2D°C; Sensitizer: 

acetophenone. @~~~' = I. @Fdd is calculated by EQUs. [II and [Zl, where the needed 
kq-values are replaced by the Stern-Vollmer quenching constants kq * TBU of the type- 
II-cleavage of butyrophenone. 
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FIGURE 1: 
Variation of product quantum 
yield of reactions 3 and 4 
with concentration of ground 
state partner B [tetramethyl- 
ethylene or cyclopentenel. 

[I] = .5 M [II] = .06 M 

sensitizer: .08 N acetophenone 

solvent : dioxane, 20 'C 

FIGURE 1 shows as an example the behaviour cf product quantum yield in reactIons 3 and 4 with 

increasing concentration of ground state partner B [III or IV1 in accordance to EQU. 4: For 

small concentrations of 6 aP increases with the reciprocal of term c4.21, in the range of high 

concentrations Qp decreases with the reclprccal of term c4.31. so that a maxlmum obtalnable 
max 

value QP exists. This maximum is broad for of k," >> 
0 
k , 

q 
and it is narrow for kf\PSky. 

fi q 

reactlon 3 

slope= 12.t.2 
Intercept = 25.t 2. 

(K Add q-' =12. E 

FIGURE 2: 

Dilution plots corres- 
ponding to FIGURE 1 far 
"small" concentrations 
of B. 

bd’kd = 20. 

Cm3 max = 1.6h.i 

max 
@P 

= .03 

<;p= Add 5.05 

slope = .07 Z.002 

mtercept = 2 I.+ .26 

(K Add. ‘bI )-’ Z.07 

KoA/KAdd =*85 

CQ,,, =.13M 

FIGURE 2 shows the corresponding linear plots with respect to small concentrations of 8. From 

these plots the indicated reaction parameters can be calculated: 
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il Lifetime of reactive triplet state 3Ax 
In reaction 3 the rate constant of intramolecular deactivation of the reactive triplet 
molecule is 12 times faster than the rate constant of the reaction, whereas in reaction 
4 this ratio is reverse. 

ill Chemical deactivation of the reactive triplet state 
In reaction 3 the rate constant for the chemical deactivation kGA is 20 times the constani 
for adduct-formation. whereas in reaction 4 these constants are of the same order of mag- 
nitude. 

i and ii1 explain the relative small product quantum yield of reaction 3. 

liil The calculated valuesof [E],,, and @(Flax fit the experimental facts [FIGURE 11. 

iv1 For LB] + m in EQU. (31 one can calculate the maximum possible yield of addition: -_ 
0 
@Add 4 [ 1 + kDA/kAdd? 

The corresponding values of .05 and . 5 for reaction 3 and 4 respectively indicate, that 
the reactivity of triplet I to IV is IO times the reactivity of triplet II to III. 
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Concentrations of substrates = .5 M with the exception of 

Dimerization of I" and III” are very inefficient. 
Dimerization of III is about 10 % in reaction 3. 

Measured by potassium-ferri-oxalate actlnometry at 312 nm 


