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Introduction: Product guantum yields of triplet-sensitized additions - Ax+ B - adducts -
depend on the yields of intersystem crossing of the sensitizer [@?izs
to the molecule A [QA

ET
B 1]
cule B (@Add) :

), traiplet enmergy transfer

) and addition of the triplet excited molecule A" to ground state mole-

o - gSens . ¢A . QB

P~ %isc eT ~ %Add * (1)

The determination of QQT and ¢§dd from the measured product quantum yield ¢P and the kinetic
SCHEME 1 gives informations about the efficiency of the sensitizer and the reactivity of the
triplet molecule BAX. From these parameters one can furthermore calculate the optimal concen-
tration ratio [A]/[B]. since B can alsoc guench the sensitizer triplet and thus hinder the de-

sired reaction.

1.]) Sensitizing process:
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2.) Addition process for a particular adduct.
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A" + B — adduct } reaction
3,x kDA 3
A"+ B —"3 A+(Bor B8°)}
} , 8 Kadd - (8]
- 1/TA } deactivation ¢Add :kAdd NG KDA'[B]+ 1/TA (3]
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Scheme 1 Kinetic scheme for triplet-sensitized adduct formation (The rate constants kpa and
kadd can also describe additlon and adduct farmation via a common metastable inter-
mediate.)
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EQUATIONS (1)-(3) give the expression for the product guantum yield:

sens
152 DA 1/Tsens 1 kg
i e P B I o ‘= (4.1)
P Add kq -TAl A Add K ‘[A]
1 17T -1
+ o (14 —SE0S 8] (4.2)
T, » k A
A " "Add Ky LAl
KB Koa
kg [A] Add

The derivative of @P with respect to B gives the concentration B max for the largest pos-

sible product guantum yield for a particular concentration of A and a particular sensitizer:

VT Rpagd o kP A+ s ) )1/2
g sens
(1 + k_,./k }

[B] max _( kB .
q DA” “Add

for sufficiently small concentrations of B the third term in EQU.

DA/kAdd

(5}

(4) 15 negligible and a plot of
‘I/<I>P versus 1/[B] is linear and yields the values of k
and intercept (FIGURE 2].

and 1/(‘[A . kAdd] from its slope

Results and discussion: The four sensitized (2+2)-photocycloadditions in TABLE 1 serve as a

test for the applicability of eguations (11-(5) to mechanistic evaluation and optimization of
the considered reactions. Provide that either of the two partners alternatively cen initiate the

reaction by guenching the triplet sensitizer, those processes indicated by ¢ > 1 have to be

Add
excluded. So it can be decided, that reactions 2 and 4 proceed via triplet of I, while reac-

tions 1 and 3 proceed via triplet of II.

reac- Lt triplet-sensitized ground state KA . TBu o 9) ¢B
tion ' | partner A partner 8 g = P Add
No. M
Cly I ° 12.4 3.9)
) . allge X . - (3.
0, Cl=rC,
X I gIxe 148, .33
)
S %0 I O 12.4 .85
5 4 Cl-*p 72
11 o0, :
O = 1.9 (5.5)
o 1 0 148, .02
O
3 TIT 3 .019
W X 1.9 (1.5)
0,
%, I = 12.4 13
4 3 Clrid 12
—” v ClyC '
>== Sl o 13.4 (5.7)
TABLE 1: Overall yields of product-formation ($p)_and of addition of the triplet-sensitized

partner

AX to ground state partner B (®pq4).

Solvent: dioxane, 20°C; Sensitizer:

acetophencne, ®3S0S = 1, ¢fyy 18 calculated by EQUs.

kg-values are replaced by the Stern-Vollmer quenching constants kg -

II-cleavage of butyrophenone.

(1) end (2), where the needed
TBu of the type-
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(31 O FIGURE 1:
.3- + Variation of product gquantum

yield of reactions 3 and 4
with concentration of ground
state partner B (tetramethyl-
ethylene or cyclopentene).

[1} = .s v [11] = .08 M

sensitizer: .08 M acetophenone

[a}

solvent: dioxane, 20 °C

—

0 L. 2. _[.B]

FIGURE 1 shows as an example the behaviour cof product guantum yield in reacticns 3 and 4 with

increasing concentration of ground state partner B (III or IV) in accordance to EQU. 4: For
small concentrations of B @P increases with the reciproeal of term (4.2), in the range of high
concentrations 9, decreases with the reciprocal of term (4.3), so that a maximum obtainable

P
value ¢gax exists. This maximum is broad for of kg g k:. and it is narrow for kgﬁtiki.

reaction

dp
A
P @)
11X+ I
O 1 L FIGURE 2¢
Dilution plots corres-
200 slope= 12.+.2 o ponding to FIGURE 1 for
intercept= 25.% 2, CII ko + -~ . "small" concentrations
-1 Cl O P e of B,
(Kaga *Tg ) =12 1 bi's
1504 ™
KDA/K Add ~ slope = ,07 £.002
Dﬂmu = 1LEM intercept = 21, ,26
-1
1004 P = .03 (Kadd- T; ) =07
=.85
(pgd £ .05 Koa/Kadd
50 DI]max =.13M
b .32
— Ir
- b <.5
o - v Add
[ - P

o) 50 100 150 = -1

FIGURE 2 shows the corresponding linear plots with respect to small concentrations of B. From

these plots the indicated reaction parameters can be calculated:



3930 No. 43

1)

Lifetime of reactive triplet state SA%

ii)

In reaction 3 the rate constant of intramolecular deactivation of the reactive triplet
molecule is 12 times faster than the rate constant of the reaction, whereas in reaction
4 this ratio is reverss.

Chemical deactivation of the reactive triplet state

In reaction 3 the rate constant for the chemical deactivation kpp is 20 times the constan

for adduct-formation, whereas in reaction 4 these constants are of the same order of mag-
nitude.

i and ii) explain the relative small product guantum yield of reaction 3.

max

1ii) The calculated valuesof [B]max and &p fit the experimental facts (FIGURE 1).

i)

For [B] + = in EQU. (3} one can calculate the maximum possible yield of addition:

B -1
<
QAdd g1+ KDA/KAdd)
The corresponding values of .05 and .5 for reaction 3 and 4 respectively indicate, that

the reactivity of triplet I to IV 1s 10 tames the reactivity of triplet II to III.
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